PROYECTO

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA - UNAD
ESCUELA DE CIENCIAS DE LA EDUCACION ECEDU

Curso: Aprendizaje de las matemáticas con el uso de las TIC

FASE 7: DESARROLLAR PROYECTO COLABORATIVO


Tutora:
MARIA BURITICA



Por:
JHON FREDY ORTIZ
Código 1.083.883.175





Final del formulario
Licenciatura en Matemáticas
GRUPO: 6
Noviembre 2017







INTRODUCCIÓN

En el presente escrito de  aprendizaje de las matemáticas con las Tic, donde  se da a conocer un proyecto educativo en el área de  matemáticas, tiene  como propósito implementar herramientas tecnológicas a la educación. A partir de  la planeación de un diseño curricular en el área de matemáticas y haciendo énfasis en el aprendizaje por competencias, y desarrollo de pensamientos matemáticos, en especial pensamiento numérico y pensamiento espacial., ya que permite al educando explorar nuevos conocimientos que se pueden explorar a partir del contexto y la formulación y resolución de problemas apoyado en las TIC.

Como futuros licenciados en matemáticos es fundamental el conocimiento en el diseño y formulación de actividades como la propuesta en la guía, ya que a partir de la misma nos permite adquirir experiencia de gran importancia en el quehacer docente, donde debemos pensar como realizar un proceso de enseñanza aprendizaje, que permita transmitir el conocimiento de manera mucho más natural a partir de la autonomía o de una construcción colectiva y vaya encaminada a una enseñanza donde se motive a los estudiantes a hacer parte activa de su aprendizaje de una manera adecuada, así mismo un proceso de evaluación pertinente.




DESCRIPCION DEL PROBLEMA

Para numerosos estudiantes las matemáticas son difíciles de aprender, aburridas e incluso de poca utilidad. Más aun en los grados mayores del bachillerato, es sabido que el álgebra se hace complicada en el grado 8°, puesto que en este periodo es donde los estudiantes se enfrentan a casos superiores de temas que involucran varias incógnitas, y operaciones con las mismas que son algo más exigentes. Es bien sabido que a los estudiantes les cuesta mucho entender los conceptos de función y de variable, asunto que los lleva a tener dificultades en reconocer y diferenciar las cantidades variables de las constantes. Este resultado está relacionado con la forma tradicional en que estos temas son enseñados en el aula que se limita a hacer explicaciones algebraicas de las relaciones funcionales.


Para enseñar tanto el concepto de función como el de variable, está demostrado la mejor manera es mediante la visualización, por lo tanto los estudiantes necesitan estar expuestos a un mayor número de situaciones que involucran el uso de software matemáticos, como la herramienta de Wiris con las cuales es posible ilustrar de manera fácil, entendible y llamativa, estos importantísimos conceptos. Recordemos que según la UNESCO “Las tecnologías de la información y la comunicación (TIC) pueden contribuir al acceso universal a la educación, la igualdad en la instrucción, el ejercicio de la enseñanza y el aprendizaje de calidad y el desarrollo profesional de los docentes, así como a la gestión dirección y administración más eficientes del sistema educativo”.



JUSTIFICACION DEL PROBLEMA

Los conceptos de función y de variable son una idea central en las matemáticas de todos los niveles. “El concepto más importante de todas las Matemáticas es, sin dudarlo, el de función: en casi toda la matemática moderna, la investigación se centra en el estudio de las funciones…” (Spivak, 1970, p. 47). La comprensión de este concepto es la base para la transición de la aritmética al análisis, sienta las bases para la comprensión del cálculo y todas las matemáticas avanzadas y es necesaria en la resolución de problemas del mundo real. De ahí la importancia de poder realizar una enseñanza efectiva de estos temas, de tal manera que se garantice que los estudiantes logren apropiarse de las ideas matemáticas que rodean estos conceptos, dándoles una correcta interpretación y desarrollando sus competencias interpretativas, reflexivas y argumentativas para aplicarlas en el la resolución de problemas.


El concepto de función no ha estado ajeno al desarrollo social y científico de la humanidad a lo largo de la historia, por lo que, ha evolucionado a la par de esta, de ahí que su definición adoptará diferentes formas (Relaciones y funciones, s.f.). En el mundo moderno, con sus constantes avances en la tecnología informática y de la comunicación, el aprendizaje de las matemáticas de hoy en día es más importante que nunca. Por lo tanto, debemos tratar de asegurar que los estudiantes adquieran un amplio conocimiento en este campo, lo que les permite integrarse en el mundo del trabajo y satisfacer las demandas del siglo 21.

El proyecto específicamente va encaminado a la solución de una situación problemica  con una perspectiva de educación inclusiva respecto a cierto grupo de estudiantes de las cuales partió el mismo problema; este inconveniente trae una línea de tiempo y transporta unos antecedentes que sean presentado desde el inicio de los grados de secundaria y por ende la manera más apropiada de trabajar con ellos es el modelo pedagógico constructivista   que va encaminado a una enseñanza donde se motiva a los estudiantes a hacer parte activa de su aprendizaje y a la vez va encaminada a la solución del problema descrito, pues es el más acertado y utilizado en todas las instituciones educativas porque evalúa el educando de una manera integral; el modelo pedagógico se ajusta a la población por los altos índices de calidad,  se adapta con facilidad a los requerimientos que generan los grupos poblaciones que va dirigido;  en términos la pertinencia en la educación es cuando tiene relación lógica, coherencia y conveniencia en las situaciones y  necesidades sociales, respecto al modelo pedagógico la pertinencia significa responder a las necesidades y expectativas del problema planteado.


      El uso de los recursos tecnológicos está en crecimiento, generando grandes cambios en la tradicional forma de enseñanza. Respecto a la integración de las TIC, es una propuesta que pretende ser presentada a todos los docentes que se sientan interesados en implementar estrategias novedosas que sirvan como ayuda fundamental en el proceso de enseñanza-aprendizaje de los educandos; se espera que en esta propuesta  los docentes asuman nuevas estrategias que sirvan como fuente de apoyo y estímulo de aprendizaje para los estudiantes, que fomente de esta manera motivación por el trabajo en las diferentes áreas del currículo para que encuentren en ellas el gusto de aprender satisfaciendo sus necesidades y logrando el cumplimiento de los objetivos en el aprendizaje de forma progresiva y constante.


OBJETIVOS

Objetivo General
Diseñar, Fortalecer e implementar estrategias didácticas innovadoras en el aprendizaje de ecuaciones de primer grado  a través de actividades lúdico-recreativas en educandos de octavo  grado.

Objetivos  Específicos

·         Reconocer las clases de ecuaciones de primer grado
·         Comprender los conceptos matemáticos de las ecuaciones de primer grado.
·         Manejar correctamente el lenguaje algebraico.
·     Aplicar los conocimientos de los teoremas de las ecuaciones de primer grado para aplicarlos en la solución de problemas.
·    Establecer espacios de formación basados en las TIC que proporcionen motivación y propendan  el aprendizaje significativo en las ecuaciones de primer grado.
·    Analizar situaciones cotidianas  y resolver de manera correcta  ejercicios, aplicado  conocimientos básicos de las ecuaciones de primer grado.



DESCRIPCION DEL MODELO

Modelo Pedagógico Constructivista
De acuerdo a la propuesta educativa enseñar no es una trasmisión de conocimientos teniendo en cuenta el modelo pedagógico constructivista, se enseña para que el estudiante construya su propio saber  a partir de la autonomía o de una construcción colectiva y formemos sujetos libres, críticos, cooperativos y  comunicativos; también se entiende por enseñar, poner en práctica los lineamientos  curriculares que define el MEN “Ministerio de Educación Nacional” con el apoyo de los estándares, los contenidos y la planeación de las áreas obligatorias; en cuanto a contenidos en educación se enseña y se aplican objetivos por periodos tomando en consideración el mejor procedimiento, seleccionando las mejores estrategias y los métodos dependiendo del nivel de comprensión del estudiante, valiéndose de los recursos didácticos, tecnológicos y utilizando lo que tenemos a nuestro alcance.

En cuanto  a contenidos en educación se enseña y se aplican objetivos por periodos, tomando en consideración el mejor procedimiento, seleccionando las mejores estrategias y los métodos dependiendo del nivel de comprensión del estudiante, valiéndose de los recursos didácticos y tecnológicos con que cuentan tanto profesores como estudiantes.

Respecto a qué, cuándo y cómo evaluar, se pretende exponer lo siguiente:
Qué evaluar, esencialmente los contenidos para el mejoramiento de la calidad en el aprendizaje de los estudiantes; cuando evaluar, se dice que la evaluación no se define por periodos ya que esta es continua y va enfocada al proceso de aprendizaje tanto de docente como estudiante. Cómo evaluar, según el MEN debe evaluarse con base en tres categorías: evaluación conceptual, evaluación procedimental, evaluación actitudinal; en  base en estas categorías se evalúa de forma continua de acuerdo al avance del  proceso de enseñanza – aprendizaje del estudiante; por ende podemos decir que no solo se evalúa por talleres, evaluación escrita, evaluación tipo icfes, evaluaciones orales, sino también con actividades que demuestren los procedimientos que  utilicen  los estudiantes.


CONCLUSIONES

·      La planeación adecuada y la implementación de estrategias de calidad en las instituciones educativas, es base fundamental para que los estudiantes encuentren garantías en su formación de acuerdo a las exigencias del mundo actual y garantizar la efectividad del proceso de enseñanza aprendizaje.
·     A partir del proyecto educativo para la enseñanza de un tema matemático se logró identificar las problemáticas que se encuentran muy a menudo en el campo educativo y a partir de ella se pueden plantear  soluciones.
·         La estrategia de enseñanza está encaminada a brindar una educación integral e inclusiva y de buena calidad,  de ahí la importancia de abordar este tipo escenarios que permiten potenciar  las habilidades y destrezas que posean  los estudiantes.

·         A través de un análisis minucioso se concluye que una buena educación integral es aquella que reúne todos los propósitos de evaluación y que su intención es evaluar para la vida, para obtener una mejor calidad en educación.





No hay comentarios:

Publicar un comentario